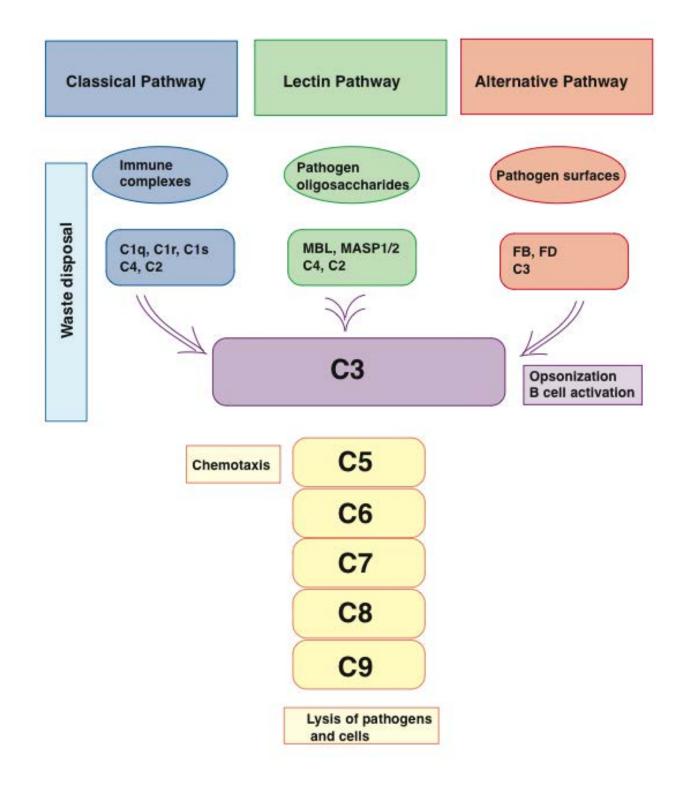
Complement Deficiencies

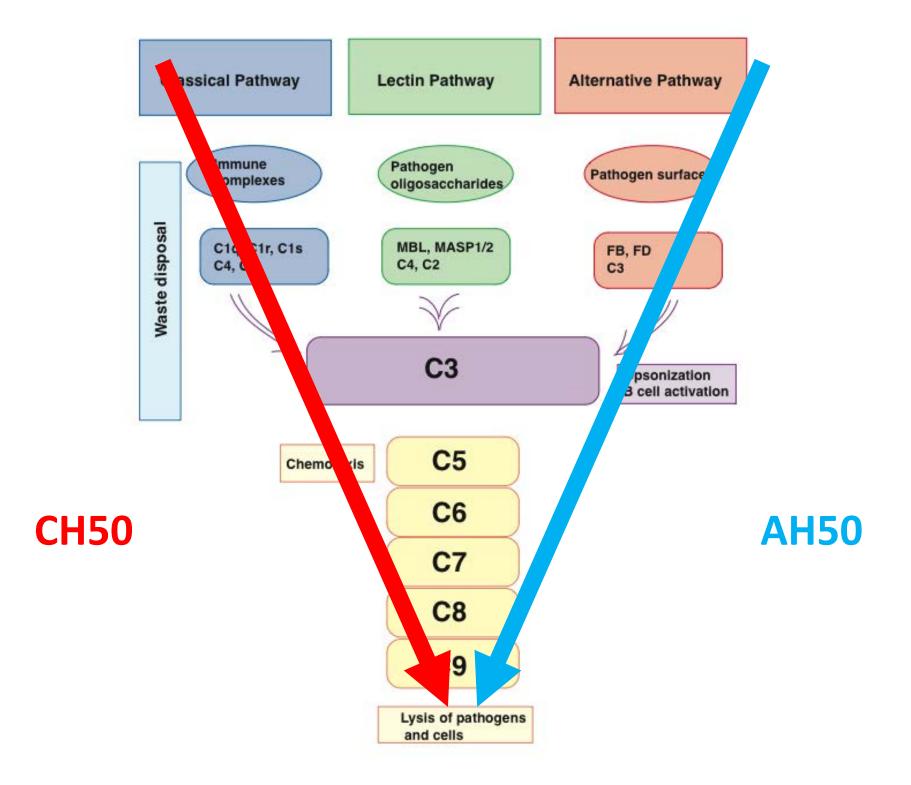
Kate Sullivan Children's Hospital of Philadelphia

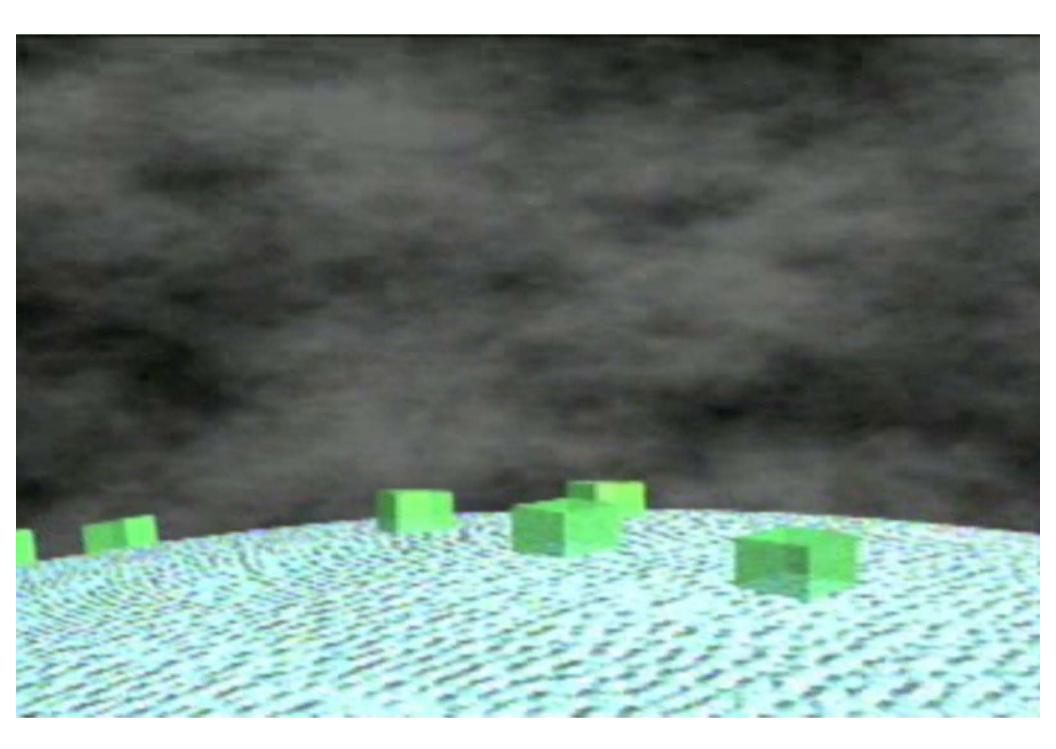
Colorado Springs circa 1960

Colorado Springs yesterday

Outline

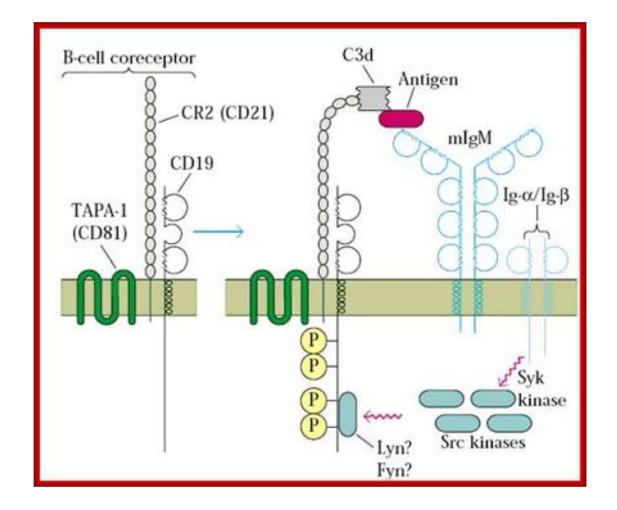

- Complement rocks!
- Complement deficiencies
 - Early complement component deficiencies
 - Terminal complement component deficiencies
 - Regulatory component deficiencies
- Hereditary angioedema
- Secondary deficiencies


Mechanisms


Function

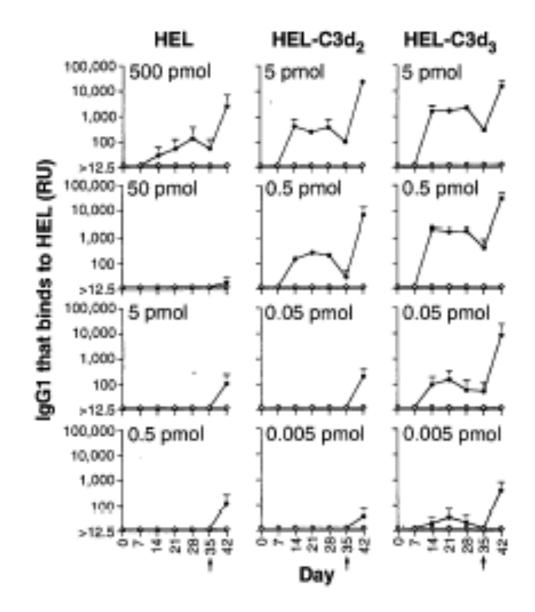
- Opsonization (C3)
- Removal of apoptotic cells (CI)
- B cell costimulation/Antigen (C3)
- Cytolysis (Gram negative bacteria) (C5-9)
- Tolerance (C4)
- Cholesterol clearance (early)
- Chemotaxis (C5)
- T cell metabolism (C3, MCP)

Opsonization


- Opsonin: Greek for tasty treat
- C3 and antibody are opsonins
- Important for encapsulated organisms
 - Haemophilus influenzae
 - Streptococcus pneumoniae
 - Neisseria meningitidis
 - Group B Streptococcus
 - Salmonella typhi
 - Klebsiella pneumoniae
 - Pseudomonas aeruginosa
 - Kingella kingae-bone and joint infections

Infants

BACTERIAL CAPSULE


The slippery capsule of Streptococcus pneumoniae helps these bacteria avoid being eaten by neutrophils

C3 is also important for antibody production

Gonzalez Ann Rev Imm 2011

It takes 1/100 the amount of protein to induce and antibody response, if the protein is tagged with complement

Dempsey Science 1996

Complement Deficiencies

Categories

- Early complement component deficiencies
 - C1, C4, C2, C3
 - SLE (glomerulonephritis)
 - Encapsulated bacteria
 - Accelerated atherosclerosis
- Terminal components
 - C5-C9
 - Neisseria
- Regulatory components
 - FD, Properdin, FH, FI
 - Neisseria
 - aHUS
- C1 esterase inhibitor (HAE)

Founder effects

Deficiency	Frequency	Population
C7	1:400	Israeli Moroccan Jews
C9	1:1000	Japanese
C6	1:1400	African Americans
C2	1:10,000	Caucasians

Early Classical Pathway

Early Classical Defects

- Systemic infections (sepsis, pneumonia, meningitis)
 - Encapsulated organisms
 - Not usually OM, sinus infections
- SLE
 - Early onset severe: C1, C4
 - Mild-moderate, cutaneous C2
 - Membranoproliferative glomerulonephritis (C3)
- Most common cause of death is infection
- Second most common cause of death is MI

Who?

- Rate of complement deficiency in adult lupus cohorts is about 1-2%
- Higher in pediatric onset SLE

- Unselected children with pneumonia have a very low rate of complement deficiency
- Recurrent systemic infections with encapsulated organisms
 - 11% of kids with recurrent invasive pneumococcal infection have C2 deficiency
 - Sepsis, meningitis
 - Ingels Ped Inf Dis J 2015

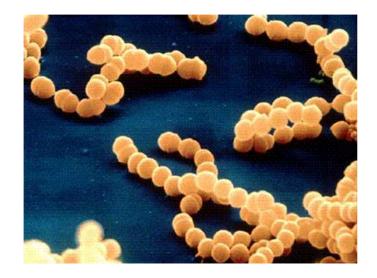
What to order?

- CH50 is a great screening test
- C3 and C4 not very useful at the first stage

Interpret

- Infants have low complement levels
- Complement is consumed in sepsis and autoimmunity
 - Optimal to wait until recovered

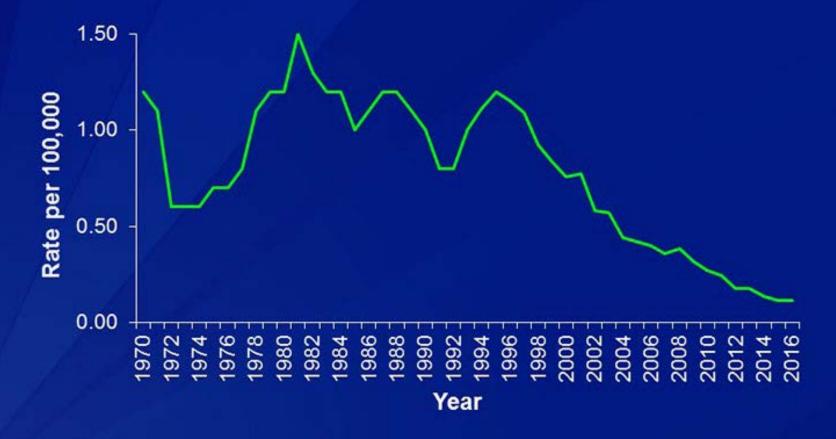
• Look for CH50=0

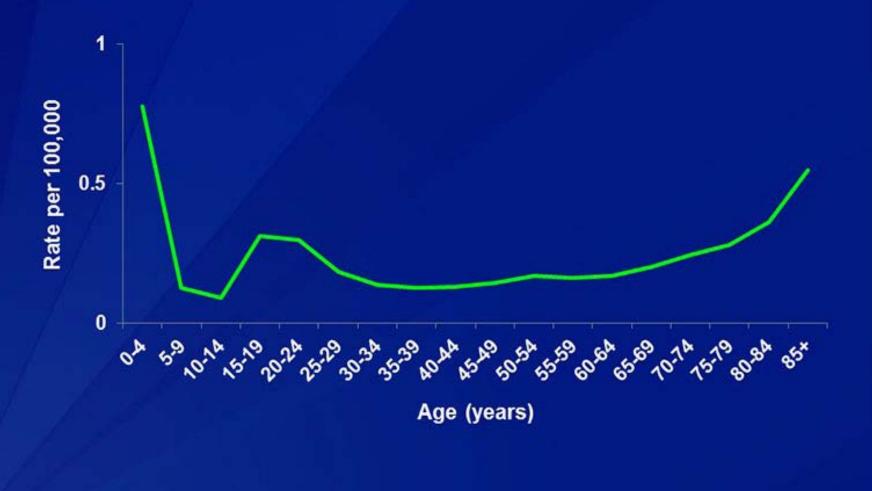

Therapy

- Hypervaccination?
 - Extrapolate from data in MAC defects
- Antibiotic prophylaxis?
 - Tried and true but resistance common
- FFP?
 - Tough logistically
 - Effective in SLE
- Statins?
 - Sensible for cardiac risk mitigation
- BMT?
 - C1q deficiency
- Liver Tx?
 - C2, C3, C4 deficiencies

Terminal components (MAC)

Terminal C' Deficiencies

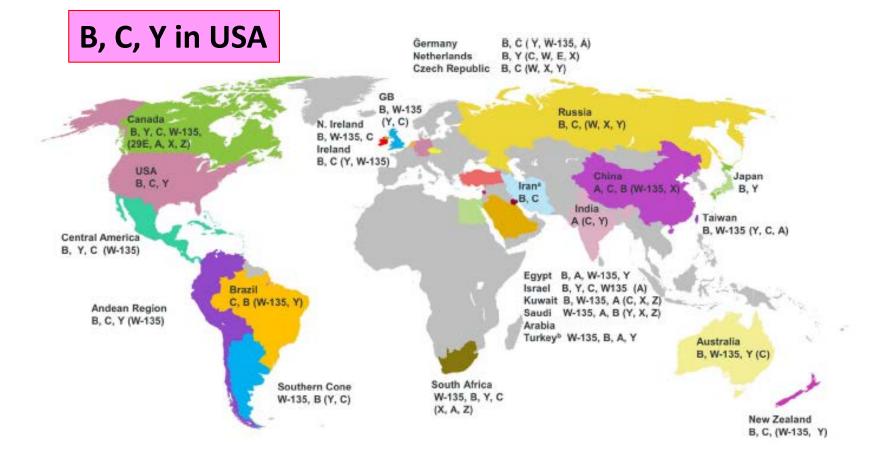

- Meningococcal infection
- Disseminated gonococcus
- Chronic meningococcemia



Meningococcal Disease Incidence, United States, 1970-2016

SOURCE: CDC; National Notifiable Diseases Surveillance System

SOURCE: CDC; National Notifiable Diseases Surveillance System


Meningococcal Incidence by Serogroup* and Age-Group, 2007–2016

SOURCE: CDC; National Notifiable Diseases Surveillance System with additional serogroup data from Active Bacterial Core surveillance and state health departments.

Unknown serogroup (19%) and other serogroups (5%) excluded

Meningococcus

*listed in order of prevalence *not listed in order of prevalence bas observed in children

Polysaccharide vaccine is A,C, W-135, Y

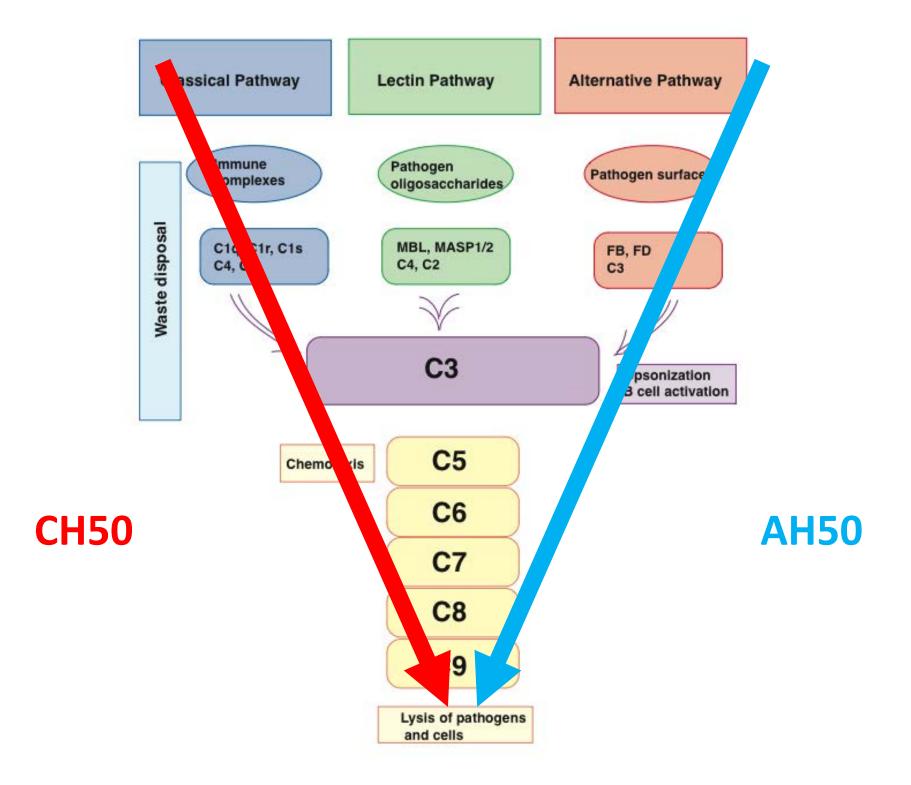
Millar JR Army Med Corp 2017

Who? First Episode

Rate of Complement Deficiencies	Country	Reference
3%	Netherlands	Fijen Lancet 1989
1-15%	USA	Merino J. Inf Dis 1983, Lee Inf Imm 1979, Eng J Clin Mic. 1980, Winkelstein Ped Inf Dis J 1987, Ellison NEJM 1983
1.5%	USSR	Platonov Medicine 1993
1%	Faroe islands during epidemic	Moller J. Clin Lab Imm 1988
23%	Tunisia	Kallel-Salami Arch Inst Past 2006
53%	New Caledonia	Daures J Clin Imm 2015

Who? Special settings

Rate of Complement Deficiencies	Setting	Country	Reference
30-41%	Recurrent disease	USA, Denmark	Merino J Inf Dis 1983 Nielsen Scand J Inf Dis 1989
27-50%	Uncommon serotypes	Netherlands	Cees Clin Inf Dis 1999, Mayateek Ped Inf Dis J 1993
14%	Family History	Denmark	Nielsen Scand J Inf Dis 1989


Who?

- Screen all patients >1y age with N. meningitidis outside of an epidemic
- Family members as appropriate
 - Only 27% of affected family members had disease

- Recurrence of meningococcal disease = 0.12/y
- Terminal components confer protection from deafness and severe disease
- Properdin and factor D deficiencies \rightarrow severe disease

What to order?

- CH50
- AH50

Interpret

- Properdin and factor D deficiencies are associated with more severe disease
 - AH50=0
- Terminal component deficiencies
 - CH50=0, AH50=0
 - C9 is an exception

Caution

- Somewhat low CH50 and AH50
 - Check specimen handling
 - Consider underlying consumption-associated disease
 - Liver disease
 - Consider C9

Therapy

- Vaccinate every 3-5 years
 - Halves the risk of meningococcal disease (probably better now with better vaccines)

ACIP:

• Menveo (MenACWY-CRM): 2, 4, 6, 12m with boost at 4y

Or

- Menactra (MenACWY-D): 9, 12m with boost at 4y (special reccs for asplenia)
 Or
- Menhibrix (Hib-MenCY-TT): 2, 4, 6, 12m. Boost with quadrivalent at 4y And
- Trumenba (MenB-FHbp)
 - 3 doses age 10-25y

Or

- Bexsero (MenB-4C)
 - 2 doses age 10-25y

Regulatory defects

Regulatory defects

- Factor H, Factor I, Factor B (GOF), C3 (GOF), MCP
 - Atypical hemolytic uremic syndrome
 - FH, FI, FB, C3
 - FFP
 - Eculizumab (\$10,000 per dose)
 - Liver-kidney transplant
 - FH, FI
 - Neisseria (distinct mutations from aHUS)
 - MCP
 - Kidney transplant
- Factor D, Properdin
 - Hypervaccination?
 - Antibiotic prophylaxis

Who?

- All aHUS (including pregnancy)
 - Sequencing typically required
- Neisserial infection with normal or slightly low CH50

Lab interpretation

- CH50=0 for most inherited deficiencies
 - Except regulatory defects
- AH50=0 for FD, Properdin, FH, FI
 - For the FH and FI mutations associated with Neisseria
 - AH50 often normal for aHUS mutations

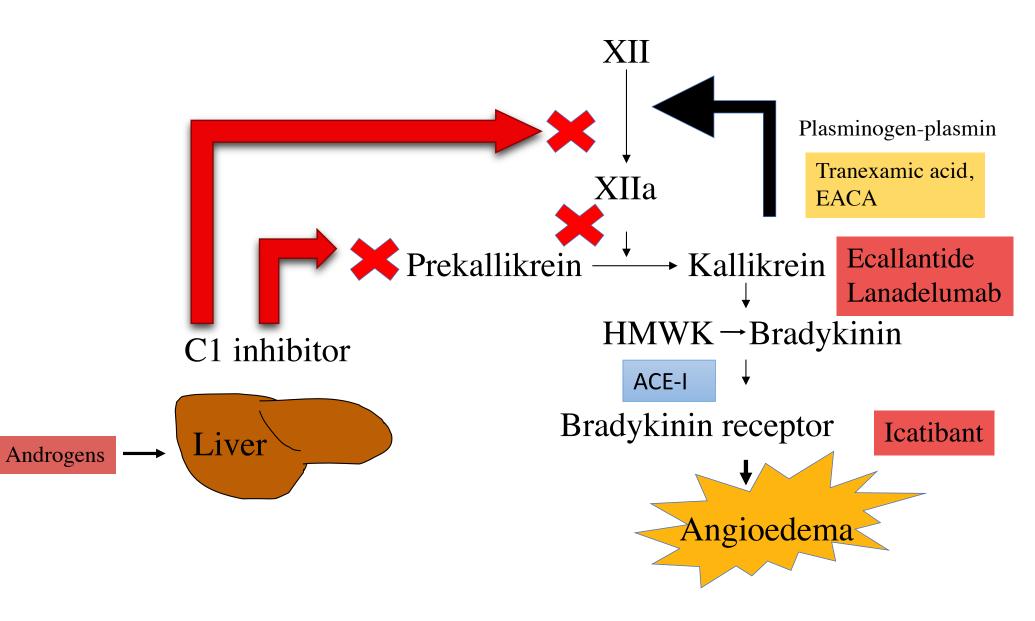
What? No MBL?

- May increase Neisseria risk 2-3X
 - But probably not at all
- May increase S. pneumoniae risk 2-4X
 - But probably not at all

- The fact that all alleles are in Hardy Weinberg equilibrium in all populations argues against a major effect
- MBL not found in any infection GWAS to date

C1 esterase inhibitor

Hereditary Angioedema


- Periodic episodes of angioedema beginning in childhood or adolescence
- Autosomal dominant inheritance
- Angioedema often precipitated by mild trauma
- Each episode lasts 2-4 days
- Some patients have a reticular rash but not urticaria

Evaluation/management

- C4 is a reasonable screen for low risk cases
- Highly suggestive history:
 - C1 inhibitor function (30-50% of normal)
- In older people or those with malignancy/autoimmunity
 - C1 inhibitor antigen level
 - C1 inhibitor function
 - C1q level
- In all cases: avoid estrogen, ACE inhibitors
- EDUCATION, EDUCATION, EDUCATION

Tissue damage drives activation of Hageman factor (XII)

Prophylaxis

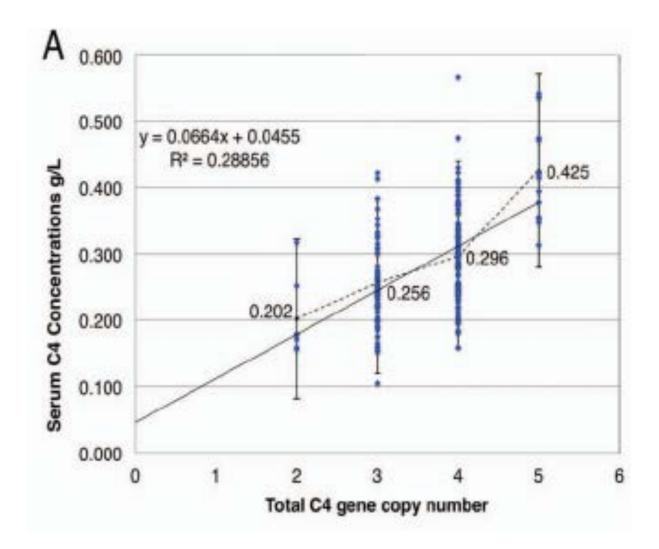
- Pre-procedure
 - C1 Inhibitor 1000U
 - Cinryze, Berinert, Haegarda (subQ), Ruconest
 - FFP 2U
 - Danazol 200mg po TID 5-7 days before procedure
 - Oxandrin 2.5-20mg QD 5-7 days before procedure
- Long term
 - C1 Inhibitor 1000U twice a week
 - Lanadelumab 300mg every 2 weeks
 - Takhyzro (kallikrein inhibitor)
 - Danazol 200mg PO QD (titrate to effect not labs)
 - Oxandrin 2.5-20mg PO QD (titrate to effect not labs)

On demand

- Firazyr (Icantibant) Home use
 - 2.5 hours
- Kalbitor (Ecallantide)
 - 3-4 hours for effect
 - 3% Anaphylaxis risk
- Berinert can be self administered IV (for some)
 - Response time 15-60 minutes
- Ruconest
 - Response time is 15-60 minutes

Evolving!

- Adverum
 - Gene therapy
 - Cure
- Biocryst
 - BCX7353
 - Phase 2 effective
 - FDA fast track
 - Oral daily pill
 - Preventive


Secondary deficiencies

Secondary deficiencies

- Low C4 + C3
 - Classical pathway activation
 - 65% SLE
 - 8% viral
 - 7% vasculitis
 - 5% Hemolytic anemia
 - 5% Liver failure
 - 5% lgG4 disease
 - 4% Renal disease
 - 3% Cryoglobulinemia
- Low C3, NI C4
 - Alternative pathway activation
 - C3 Nephritic factor
 - 80% of pediatric patients with lipodystrophy
 - 80% of patients with MPGN Type II

Caution: C4 is highly variable

Secondary deficiencies

- 50% of SLE patients have low complement
 - 250X risk of meningococcal disease
 - 5X risk of invasive pneumococcal disease
- Cirrhosis
 - 3X increased risk of invasive pneumococcal disease
- Nephritic factor
 - Risk for Neisseria increased
- Eculizumab
 - 4/1000 patients meningococcal disease

Summary

- Early classical pathway deficiencies
 - Cardiac risk
 - Infection prevention
- Terminal component deficiencies
 - Infection prevention
- Regulatory components
- Secondary deficiencies common
 - Patients need our help

Thank you!!!

Dawn Westerfer Kelly Maurer Daniella Levy Erez Lihua Shi Melanie Ruffner Li Song